Stationary distributions of a model of sympatric speciation

Research output: Contribution to journalArticle (Academic Journal)peer-review

3 Citations (Scopus)

Abstract

This paper deals with a model of sympatric speciation, that is, speciation in the absence of geographical separation, originally proposed by U. Dieckmann and M. Doebeli in 1999. We modify their original model to obtain a Fleming-Viot type model and study its stationary distribution. We show that speciation may occur, that is, the stationary distribution puts most of the mass on a configuration that does not concentrate on the phenotype with maximum carrying capacity, if competition between phenotypes is intense enough. Conversely, if competition between phenotypes is not intense, then speciation will not occur and most of the population will have the phenotype with the highest carrying capacity. The length of time it takes speciation to occur also has a delicate dependence on the mutation parameter, and the exact shape of the carrying capacity function and the competition kernel.
Translated title of the contributionStationary distributions of a model of sympatric speciation
Original languageEnglish
Pages (from-to)840 - 874
Number of pages35
JournalAnnals of Applied Probability
Volume17 (3)
DOIs
Publication statusPublished - Jun 2007

Bibliographical note

Publisher: Institute of Mathematical Statistics

Fingerprint Dive into the research topics of 'Stationary distributions of a model of sympatric speciation'. Together they form a unique fingerprint.

Cite this