Research output per year
Research output per year
Paul J Vardanega*, Malcolm D. Bolton
Research output: Contribution to journal › Article (Academic Journal) › peer-review
An analysis is presented of a database of 67 tests on 21 clays and silts of undrained shear stress-strain data of fine-grained soils. Normalizations of secant G in terms of initial mean effective stress p' (i.e., G/p' versus log gamma) or undrained shear strength c(u) (i.e., G/c(u) versus log gamma) are shown to be much less successful in reducing the scatter between different clays than the approach that uses the maximum shear modulus, G(max), a technique still not universally adopted by geotechnical researchers and constitutive modelers. Analysis of semiempirical expressions for G(max) is presented and a simple expression that uses only a void-ratio function and a confining-stress function is proposed. This is shown to be superior to a Hardin-style equation, and the void ratio function is demonstrated as an alternative to an overconsolidation ratio (OCR) function. To derive correlations that offer reliable estimates of secant stiffness at any required magnitude of working strain, secant shear modulus G is normalized with respect to its small-strain value G(max), and shear strain gamma is normalized with respect to a reference strain gamma(ref) at which this stiffness has halved. The data are corrected to two standard strain rates to reduce the discrepancy between data obtained from static and cyclic testing. The reference strain gamma(ref) is approximated as a function of the plasticity index. A unique normalized shear modulus reduction curve in the shape of a modified hyperbola is fitted to all the available data up to shear strains of the order of 1%. As a result, good estimates can be made of the modulus reduction G/G(max) +/- 30% across all strain levels in approximately 90% of the cases studied. New design charts are proposed to update the commonly used design curves. (C) 2013 American Society of Civil Engineers.
Original language | English |
---|---|
Pages (from-to) | 1575-1589 |
Number of pages | 15 |
Journal | Journal of Geotechnical and Geoenvironmental Engineering |
Volume | 139 |
Issue number | 9 |
Early online date | 4 Jan 2013 |
DOIs | |
Publication status | Published - 9 Sept 2013 |
Research output: Contribution to journal › Article (Academic Journal) › peer-review
Research output: Chapter in Book/Report/Conference proceeding › Conference Contribution (Conference Proceeding)