TY - GEN
T1 - Stiffness of lightly cemented sand under multiaxial loading
AU - Bellaver Corte, Marina
AU - Ibraim, Erdin
AU - Festugato, Lucas
AU - Diambra, Andrea
AU - Consoli, Nilo Cesar
PY - 2019/6/25
Y1 - 2019/6/25
N2 - This paper presents experimental triaxial tests conducted on two lightly cemented sand samples on the set-up conditions of a Hollow Cylinder Torsional Apparatus (HCTA). The laboratory study has been carried out on an angular to sub-angular silica sand reinforced with Portland cement of high early strength. The samples have identical porosity/volumetric cement content ratio, η/Civ, values. The Young’s modulus and shear modulus were measured by the application of a series of small unload-reload cycles at different investigation points along the triaxial stress path up to about 50% of the maximum deviatoric stress. At these investigation points, additional series of unload-reload cycles of higher amplitudes were also applied and the stiffness moduli assessed using local instrumentation. While the peak strength seems to be controlled by the density of the sand matrix, as extensive bond cementation damages occur at peak and pre-peak stages, the Young’s modulus and shear modulus normalised by the void ratio function show the effect of the cementation ratio with higher values for the sample with higher cementation ratio.
AB - This paper presents experimental triaxial tests conducted on two lightly cemented sand samples on the set-up conditions of a Hollow Cylinder Torsional Apparatus (HCTA). The laboratory study has been carried out on an angular to sub-angular silica sand reinforced with Portland cement of high early strength. The samples have identical porosity/volumetric cement content ratio, η/Civ, values. The Young’s modulus and shear modulus were measured by the application of a series of small unload-reload cycles at different investigation points along the triaxial stress path up to about 50% of the maximum deviatoric stress. At these investigation points, additional series of unload-reload cycles of higher amplitudes were also applied and the stiffness moduli assessed using local instrumentation. While the peak strength seems to be controlled by the density of the sand matrix, as extensive bond cementation damages occur at peak and pre-peak stages, the Young’s modulus and shear modulus normalised by the void ratio function show the effect of the cementation ratio with higher values for the sample with higher cementation ratio.
UR - http://www.scopus.com/inward/record.url?scp=85069665222&partnerID=8YFLogxK
U2 - 10.1051/e3sconf/20199211008
DO - 10.1051/e3sconf/20199211008
M3 - Conference Contribution (Conference Proceeding)
AN - SCOPUS:85069665222
VL - 92
T3 - E3S Web of Conferences
BT - 7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019
A2 - Ibraim, Erdin
A2 - Tarantino, Alessandro
PB - EDP Sciences
T2 - 7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019
Y2 - 26 June 2019 through 28 June 2019
ER -