Stochastic stabilization of chaos and the cosmic microwave background

CP Dettmann, JP Keating, SD Prado

Research output: Contribution to journalArticle (Academic Journal)peer-review

2 Citations (Scopus)

Abstract

The cosmic microwave background (CMB) is a contemporary echo of the Big Bang. The recently announced WMAP 1-year sky maps(1) provide exceptionally accurate data for the CMB, making it possible to probe the physics of the early Universe down to an unprecedented level of detail. Fluctuations in the CMB have a distribution that is close to Gaussian (i.e. normal).(2) There has been considerable interest in identifying physical mechanisms that might lead to deviations from the Gaussian distribution.(2,3) One class of cosmological models that have been much studied are those in which the Universe has constant negative curvature; all photon trajectories are then exponentially unstable and the Gaussian distribution of the CMB fluctuations, has been related to general properties of quantum wave-functions in chaotic systems.(4-6) Inhomogeneities in the distribution of matter imply a non-constant curvature. Here we show that, surprisingly, random perturbations in the curvature can stabilize photon trajectories. We argue that this leads to quantifiable non-Gaussian fluctuations in the CMB, as well as having other potentially important cosmological consequences.
Translated title of the contributionStochastic stabilization of chaos and the cosmic microwave background
Original languageEnglish
Pages (from-to)1461 - 1467
JournalInternational Journal of Modern Physics D
Volume13 (7)
Publication statusPublished - Apr 2004

Bibliographical note

Publisher: World Scientific Publ Co Pte Ltd
Other identifier: IDS Number: 862IZ

Fingerprint Dive into the research topics of 'Stochastic stabilization of chaos and the cosmic microwave background'. Together they form a unique fingerprint.

Cite this