Projects per year
Abstract
We present a microscopic model of a disordered viscoelastic active solid, i.e., an active material whose long time behavior is elastic as opposed to viscous. It is composed of filaments, passive cross-links, and molecular motors powered by stored chemical energy, e.g., actomyosin powered by adenosine triphosphate. Our model allows us to study the collective behavior of contractile active elements and how their interaction with each other and the passive elastic elements determines the macroscopic mechanical properties of the active material. As a result of the (un)binding dynamics of the active elements, we find that this system provides a highly responsive material with a dynamic mechanical response strongly dependent on the amount of deformation.
Original language | English |
---|---|
Article number | 028102 |
Journal | Physical Review Letters |
Volume | 113 |
Issue number | 2 |
DOIs | |
Publication status | Published - 7 Jul 2014 |
Fingerprint
Dive into the research topics of 'Stress reorganization and response in active solids'. Together they form a unique fingerprint.Projects
- 1 Finished
-
NSF MATERIALS WORLD NETWORK: MICROSCOPIC MODELS OF CROSS-LINKED ACTIVE GELS
Liverpool, T. B. (Principal Investigator)
1/03/09 → 1/03/12
Project: Research
Profiles
-
Professor Tanniemola B Liverpool
- School of Mathematics - Professor of Theoretical Physics
- Fluids and materials
- Applied Mathematics
Person: Academic , Member, Group lead