Projects per year
Abstract
The density and structure of liquid Fe-C alloys have been measured up to 58 GPa and 3200 K by in-situ X-ray diffraction using a Paris-Edinburgh press and laser-heated diamond anvil cell. Study of the pressure evolution of the local structure inferred by XRD measurements is important to understand the compression mechanism of the liquid. Obtained data show that the degree of compression is greater for the first coordination sphere than the second and third coordination spheres. The extrapolation of the measured density suggests that carbon cannot be the only light element alloyed to iron in the Earth's core, as 8−16 at%C (1.8−3.7 wt%C) would be necessary to explain the density deficit of the outer core relative to pure Fe. This concentration is too high to account for outer core velocity. The presence of other light elements (e.g., O, Si, S and H) is thus required.
Original language | English |
---|---|
Pages (from-to) | 7813-7823 |
Number of pages | 11 |
Journal | Journal of Geophysical Research: Solid Earth |
Volume | 122 |
Issue number | 10 |
Early online date | 19 Oct 2017 |
DOIs | |
Publication status | Published - 27 Nov 2017 |
Keywords
- Composition of the planets
- Experimental mineralogy and petrology
- High-pressure behavior
- X-ray, neutron and electron spectroscopy and diffraction
- liquid density
- Earth's core
- light elements
Fingerprint
Dive into the research topics of 'Structure and density of Fe-C liquid alloys under high pressure'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Diffusion in the DAC: Probing the physical state of the Earth's inner core
30/09/13 → 30/09/16
Project: Research