Studies of Competing Evaporation Rates of Multiple Volatile Components from a Single Binary-Component Aerosol Droplet

Flo Gregson, Mani Ordoubadi, Rachael Miles, Allen Haddrell, David Barona, D Lewis, T Church, R Vehring, Jonathan Reid

Research output: Contribution to journalArticle (Academic Journal)peer-review

13 Citations (Scopus)
67 Downloads (Pure)

Abstract

The simultaneous evaporation and condensation of multiple volatile components from multicomponent aerosol droplets leads to changes in droplet size, composition and temperature. Measurements and models that capture and predict these dynamic aerosol processes are key to understanding aerosol microphysics in a broad range of contexts. We report measurements of the evaporation kinetics of droplets (initially ∼25 μm radius) formed from mixtures of ethanol and water levitated within a electrodynamic balance over timescales spanning 500 ms to 6 s. Measurements of evaporation into a gas phase of varied relative humidity and temperature are shown to compare well with predictions from a numerical model. We show that water condensation from the gas phase can occur concurrently with ethanol evaporation from aqueous–ethanol droplets. Indeed, water can condense so rapidly during the evaporation of a pure ethanol droplet in a humid environment, driven by the evaporative cooling the droplet experiences, that the droplet becomes pure water within 0.4 s.
Original languageEnglish
Pages (from-to)9709-9719
Number of pages11
JournalPhysical Chemistry Chemical Physics
Volume21
Issue number19
Early online date23 Apr 2019
DOIs
Publication statusPublished - 21 May 2019

Fingerprint Dive into the research topics of 'Studies of Competing Evaporation Rates of Multiple Volatile Components from a Single Binary-Component Aerosol Droplet'. Together they form a unique fingerprint.

Cite this