Abstract
The paper concerns the analysis of global minimizers of a Dirichlet-type energy functional defined on the space of vector fields H1(S,T), where S and T are surfaces of revolution. The energy functional we consider is closely related to a reduced model in the variational theory of micromagnetism for the analysis of observable magnetization states in curved thin films. We show that axially symmetric minimizers always exist, and if the target surface T is never flat, then any coexisting minimizer must have line symmetry. Thus, the minimization problem reduces to the computation of an optimal one-dimensional profile. We also provide a necessary and sufficient condition for energy minimizers to be axially symmetric.
Original language | English |
---|---|
Article number | 104076 |
Journal | Nonlinear Analysis: Real World Applications |
Volume | 78 |
Early online date | 6 Feb 2024 |
DOIs | |
Publication status | Published - Aug 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Author(s)
Keywords
- Axial symmetry
- Harmonic maps
- Magnetic skyrmions
- Micromagnetics