Sulfur isotope evidence for a Paleoarchean subseafloor biosphere, Barberton, South Africa

Nicola McLoughlin, E. G. Grosch, M. R. Kilburn, D. Wacey

Research output: Contribution to journalArticle (Academic Journal)peer-review

47 Citations (Scopus)


The Archean sub-seafloor has been proposed as an environment for the emergence of life, with septate clusters of titanite microtextures in pillow lava rims argued to be the earliest traces of microbial microboring. Here we use nanoscale secondary ion mass spectrometry (NanoSIMS) to test possible geochemical traces of life in ca. 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. Sulfide inclusions in the titanite microtextures record strongly negative sulfur isotope fractionations of δ 34S VCDT -39.8‰ to -3.2‰ (VCDT-Vienna Canyon Diablo Troilite). These represent the largest range and most negative 34S values so far reported from the Archean, and are consistent with an early biogenic origin for the sulfides. Extensive in situ elemental mapping did not find any organic linings associated with the microtextures, despite the high spatial resolution and sensitivity of the NanoSIMS. The absence of organic linings thus excludes a key line of evidence previously used to support the biogenicity of the microtextures. In contrast, in situ sulfur isotope analysis of basalt-hosted sulfides provides an alternative approach to investigating the existence and nature of an Archean subseafloor biosphere.

Original languageEnglish
Pages (from-to)1031-1034
Number of pages4
Issue number11
Publication statusPublished - Nov 2012


Dive into the research topics of 'Sulfur isotope evidence for a Paleoarchean subseafloor biosphere, Barberton, South Africa'. Together they form a unique fingerprint.

Cite this