Sulfuryl fluoride in the global atmosphere

J. Muehle, J. Huang, R. F. Weiss, R. G. Prinn, B. R. Miller, P. K. Salameh, C. M. Harth, P. J. Fraser, L. W. Porter, B. R. Greally, S. O'Doherty, P. G. Simmonds

Research output: Contribution to journalArticle (Academic Journal)

Abstract

The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO2F2) have been made as part of the Advanced Global Atmospheric Gas Experiment (AGAGE) program. The global tropospheric background concentration of SO2F2 has increased by 5 +/- 1% per year from similar to 0.3 ppt (parts per trillion, dry air mol fraction) in 1978 to similar to 1.35 ppt in May 2007 in the Southern Hemisphere, and from similar to 1.08 ppt in 1999 to similar to 1.53 ppt in May 2007 in the Northern Hemisphere. The SO2F2 interhemispheric concentration ratio was 1.13 +/- 0.02 from 1999 to 2007. Two-dimensional 12-box model inversions yield global total and global oceanic uptake atmospheric lifetimes of 36 +/- 11 and 40 +/- 13 years, respectively, with hydrolysis in the ocean being the dominant sink, in good agreement with 35 +/- 14 years from a simple oceanic uptake calculation using transfer velocity and solubility. Modeled SO2F2 emissions rose from similar to 0.6 Gg/a in 1978 to similar to 1.9 Gg/a in 2007, but estimated industrial production exceeds these modeled emissions by an average of similar to 50%. This discrepancy cannot be explained with a hypothetical land sink in the model, suggesting that only similar to 2/3 of the manufactured SO2F2 is actually emitted into the atmosphere and that similar to 1/3 may be destroyed during fumigation. With mean SO2F2 tropospheric mixing ratios of similar to 1.4 ppt, its radiative forcing is small and it is probably an insignificant sulfur source to the stratosphere. However, with a high global warming potential similar to CFC-11, and likely increases in its future use, continued atmospheric monitoring of SO2F2 is warranted.

Original languageEnglish
Article numberD05306
Pages (from-to)-
Number of pages13
JournalJournal of Geophysical Research: Earth Surface
Volume114
DOIs
Publication statusPublished - 12 Mar 2009

Cite this

Muehle, J., Huang, J., Weiss, R. F., Prinn, R. G., Miller, B. R., Salameh, P. K., Harth, C. M., Fraser, P. J., Porter, L. W., Greally, B. R., O'Doherty, S., & Simmonds, P. G. (2009). Sulfuryl fluoride in the global atmosphere. Journal of Geophysical Research: Earth Surface, 114, -. [D05306]. https://doi.org/10.1029/2008JD011162