Abstract
Single-mode fiber's physical capacity boundaries will soon be reached; hence, alternative solutions are much needed to overcome the multiplying and remarkably large bandwidth requests. Space division multiplexing (SDM) using multicore fibers (MCFs), multielement fibers, multimode fibers, and their combination; few-mode MCFs; or fibers based on orbital angular momentum are considered to be the propitious stepping-stones to overcome the capacity crunch of conventional single-core fibers. We critically review research progress on SDM fibers and network components, and we introduce two figures of merit aiming for quantitative evaluation of technologies such as amplifiers, fan-in/fan-out multiplexers, transmitters, switches, and SDM nodes. Results show that SDM fibers achieve a 1185-fold (18-fold) spectral–spatial efficiency increase compared with the 276-SMF bundle (single-core fiber) currently installed on the ground. In addition, an analysis of crosstalk in MCFs shows how SDM concepts can be further exploited to fit in various optical networks such as core, metro, and especially future intra-data center optical interconnects. Finally, research challenges and future directions are discussed.
Original language | English |
---|---|
Pages (from-to) | 2136-2156 |
Number of pages | 21 |
Journal | IEEE Communications Surveys & Tutorials |
Volume | 17 |
Issue number | 4 |
Publication status | Published - 20 Aug 2015 |
Bibliographical note
Date of Current Version : 19 November 2015Keywords
- Components Performance per Footprint Area and Volume
- Crosstalk
- Data-Center Networks
- Figures of Merit
- Multicore Fibers
- Space Division Multiplexing
- Spectral-Spatial Efficiency
Fingerprint
Dive into the research topics of 'Survey and Evaluation of Space Division Multiplexing: From Technologies to Optical Networks'. Together they form a unique fingerprint.Profiles
-
Professor Dimitra Simeonidou
- Bristol Digital Futures Institute - Head of Bristol Digital Futures Institute
- Department of Electrical & Electronic Engineering - Professor and Director, Smart Internet Lab
- Bristol Poverty Institute
- High Performance Networks Group (HPN)
- Photonics
- Cabot Institute for the Environment
Person: Academic , Academic , Member