Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters

James A. Bowden*, Stephen G. Burrow, Andrea Cammarano, Lindsay R. Clare, Paul D. Mitcheson

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

33 Citations (Scopus)

Abstract

Energy harvesters based upon resonant mass-spring-damper systems can only generate useful power over a narrow range of excitation frequencies. This is a significant limitation in applications where the vibration source frequency changes over time. In this paper, an active electrical load is presented which can overcome the bandwidth limitations by parametrically tuning the overall harvester system. The electrical tuning technique synthesizes an optimum reactive load with high-efficiency switch-mode electronics, which also provides rectification, feeding the energy harvested into a dc store. The method is shown to be effective at increasing the power frequency bandwidth of resonant type harvesters and offers the capability of autonomous operation. The theoretical basis for the technique is presented and verified with experiment results. The paper illustrates the challenges of implementing the power electronic converter for a low-quiescent power overhead and in choosing the control architecture and tuning algorithms.

Original languageEnglish
Article number6835185
Pages (from-to)603-610
Number of pages8
JournalIEEE/ASME Transactions on Mechatronics
Volume20
Issue number2
DOIs
Publication statusPublished - 1 Apr 2015

Keywords

  • AC-DC power converters
  • boost converter
  • energy harvesting
  • low-power electronics
  • rectifiers

Fingerprint

Dive into the research topics of 'Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters'. Together they form a unique fingerprint.

Cite this