TY - JOUR
T1 - Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation
AU - Choe, Han Kyoung
AU - Kim, Hee-Dae
AU - Park, Sung Ho
AU - Lee, Han-Woong
AU - Park, Jae Yong
AU - Seong, Jae Yong
AU - Lightman, Stafford L
AU - Son, Gi Hoon
AU - Kim, Kyungjin
PY - 2013/4/2
Y1 - 2013/4/2
N2 - Pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH) is essential for pituitary gonadotrope function. Although the importance of pulsatile GnRH secretion has been recognized for several decades, the mechanisms underlying GnRH pulse generation in hypothalamic neural networks remain elusive. Here, we demonstrate the ultradian rhythm of GnRH gene transcription in single GnRH neurons using cultured hypothalamic slices prepared from transgenic mice expressing a GnRH promoter-driven destabilized luciferase reporter. Although GnRH promoter activity in each GnRH neuron exhibited an ultradian pattern of oscillations with a period of ∼10 h, GnRH neuronal cultures exhibited partially synchronized bursts of GnRH transcriptional activity at ∼2-h intervals. Surprisingly, pulsatile administration of kisspeptin, a potent GnRH secretagogue, evoked dramatic synchronous activation of GnRH gene transcription with robust stimulation of pulsatile GnRH secretion. We also addressed the issue of hierarchical interaction between the circadian and ultradian rhythms by using Bmal1-deficient mice with defective circadian clocks. The circadian molecular oscillator barely affected basal ultradian oscillation of GnRH transcription but was heavily involved in kisspeptin-evoked responses of GnRH neurons. In conclusion, we have clearly shown synchronous bursts of GnRH gene transcription in the hypothalamic GnRH neuronal population in association with episodic neurohormone secretion, thereby providing insight into GnRH pulse generation.
AB - Pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH) is essential for pituitary gonadotrope function. Although the importance of pulsatile GnRH secretion has been recognized for several decades, the mechanisms underlying GnRH pulse generation in hypothalamic neural networks remain elusive. Here, we demonstrate the ultradian rhythm of GnRH gene transcription in single GnRH neurons using cultured hypothalamic slices prepared from transgenic mice expressing a GnRH promoter-driven destabilized luciferase reporter. Although GnRH promoter activity in each GnRH neuron exhibited an ultradian pattern of oscillations with a period of ∼10 h, GnRH neuronal cultures exhibited partially synchronized bursts of GnRH transcriptional activity at ∼2-h intervals. Surprisingly, pulsatile administration of kisspeptin, a potent GnRH secretagogue, evoked dramatic synchronous activation of GnRH gene transcription with robust stimulation of pulsatile GnRH secretion. We also addressed the issue of hierarchical interaction between the circadian and ultradian rhythms by using Bmal1-deficient mice with defective circadian clocks. The circadian molecular oscillator barely affected basal ultradian oscillation of GnRH transcription but was heavily involved in kisspeptin-evoked responses of GnRH neurons. In conclusion, we have clearly shown synchronous bursts of GnRH gene transcription in the hypothalamic GnRH neuronal population in association with episodic neurohormone secretion, thereby providing insight into GnRH pulse generation.
U2 - 10.1073/pnas.1213594110
DO - 10.1073/pnas.1213594110
M3 - Article (Academic Journal)
C2 - 23509283
AN - SCOPUS:84875834768
SN - 0027-8424
VL - 110
SP - 5677
EP - 5682
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 14
ER -