TY - JOUR
T1 - Synthesis, Photophysical and Electronic Properties of a D-π-A Julolidine-like Pyrenyl-o-Carborane
AU - Krebs, Johannes
AU - Brändler, Lisa
AU - Krummenacher, Ivo
AU - Friedrich, Alexandra
AU - Braunschweig, Holger
AU - Finze, Maik
AU - Curchod, Basile F E
AU - Marder, Todd B
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024/7/19
Y1 - 2024/7/19
N2 - We synthesized 2-(1-1,2-dicarbadodecaboranyl(12))-6,6,12,12-tetramethyl-7,8,11,12-tetrahydro-6H,10H-phenaleno[1,9-fg]pyrido[3,2,1-ij]quinoline (4) a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and LR-TDDFT calculations, we compare o-carborane and B(mes)2 (mes = 2,4,6-Me3C6H2) as acceptor groups. Whereas the π-acceptor strength of B(mes)2 is sufficient to drop the pyrene LUMO+1 below the LUMO, the carborane does not do this. We confirm the π-donor strength of the julolidine-like moiety, however, which raises the pyrene HOMO-1 above the HOMO. In contrast to the analogous pyrene-2-yl-o-carborane, 2-(1-1,2-dicarbadodecaboranyl(12))-pyrene VI, which exhibits dual fluorescence, because the rate of internal conversion between locally-excited (LE) and charge transfer (CT) (from the pyrene to the carborane) states is faster than the radiative decay rate, leading to a thermodynamic equilibrium between the 2 states, 4 shows only single fluorescence, as the CT state involving the carborane as the acceptor moiety in not kinetically accessible, so a more localized CT emission involving the julolidine-like pyrene moiety is observed.
AB - We synthesized 2-(1-1,2-dicarbadodecaboranyl(12))-6,6,12,12-tetramethyl-7,8,11,12-tetrahydro-6H,10H-phenaleno[1,9-fg]pyrido[3,2,1-ij]quinoline (4) a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and LR-TDDFT calculations, we compare o-carborane and B(mes)2 (mes = 2,4,6-Me3C6H2) as acceptor groups. Whereas the π-acceptor strength of B(mes)2 is sufficient to drop the pyrene LUMO+1 below the LUMO, the carborane does not do this. We confirm the π-donor strength of the julolidine-like moiety, however, which raises the pyrene HOMO-1 above the HOMO. In contrast to the analogous pyrene-2-yl-o-carborane, 2-(1-1,2-dicarbadodecaboranyl(12))-pyrene VI, which exhibits dual fluorescence, because the rate of internal conversion between locally-excited (LE) and charge transfer (CT) (from the pyrene to the carborane) states is faster than the radiative decay rate, leading to a thermodynamic equilibrium between the 2 states, 4 shows only single fluorescence, as the CT state involving the carborane as the acceptor moiety in not kinetically accessible, so a more localized CT emission involving the julolidine-like pyrene moiety is observed.
U2 - 10.1002/chem.202401704
DO - 10.1002/chem.202401704
M3 - Article (Academic Journal)
C2 - 38758081
SN - 0947-6539
VL - 30
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 41
M1 - e202401704
ER -