Systemic infection modifies the neuroinflammatory response in late stage Alzheimer's disease

Sonja Rakic, Yat M A Hung, Denise So, Hannah M Tayler, William Varney, Joe Wild, Scott Harris, Clive Holmes, Seth Love, William Stewart, James A R Nicoll, Delphine Boche

Research output: Contribution to journalArticle (Academic Journal)peer-review

55 Citations (Scopus)
338 Downloads (Pure)

Abstract

Clinical studies indicate that systemic infections accelerate cognitive decline in Alzheimer's disease. Animal models suggest that this may be due to enhanced pro-inflammatory changes in the brain. We have performed a post-mortem human study to determine whether systemic infection modifies the neuropathology and in particular, neuroinflammation, in the late-stage of the disease.Sections of cerebral cortex and underlying white matter from controls and Alzheimer's patients who died with or without a terminal systemic infection were immunolabelled and quantified for: (i) Αβ and phosphorylated-tau; (ii) the inflammation-related proteins Iba1, CD68, HLA-DR, FcγRs (CD64, CD32a, CD32b, CD16), CHIL3L1, IL4R and CCR2; and (iii) T-cell marker CD3. In Alzheimer's disease, the synaptic proteins synaptophysin and PSD-95 were quantified by ELISA, and the inflammatory proteins and mRNAs by MesoScale Discovery Multiplex Assays and qPCR, respectively.Systemic infection in Alzheimer's disease was associated with decreased CD16 (p = 0.027, grey matter) and CD68 (p = 0.015, white matter); increased CD64 (p = 0.017, white matter) as well as increased protein expression of IL6 (p = 0.047) and decreased IL5 (p = 0.007), IL7 (p = 0.002), IL12/IL23p40 (p = 0.001), IL15 (p = 0.008), IL16 (p < 0.001) and IL17A (p < 0.001). Increased expression of anti-inflammatory genes CHI3L1 (p = 0.012) and IL4R (p = 0.004) were detected in this group. T-cell recruitment to the brain was reduced when systemic infection was present. However, exposure to systemic infection did not modify the pathology. In Alzheimer's disease, CD68 (p = 0.026), CD64 (p = 0.002), CHI3L1 (p = 0.016), IL4R (p = 0.005) and CCR2 (p = 0.010) were increased independently of systemic infection.Our findings suggest that systemic infections modify neuroinflammatory processes in Alzheimer's disease. However, rather than promoting pro-inflammatory changes, as observed in experimental models, they seem to promote an anti-inflammatory, potentially immunosuppressive, environment in the human brain.

Original languageEnglish
Article number88
Number of pages13
JournalActa Neuropathologica Communications
Volume6
Issue number1
DOIs
Publication statusPublished - 7 Sept 2018

Research Groups and Themes

  • Cerebrovascular and Dementia Research Group

Keywords

  • Alzheimer’s disease
  • Systemic infection
  • Neuroinflammation
  • Human brain
  • Microglia

Fingerprint

Dive into the research topics of 'Systemic infection modifies the neuroinflammatory response in late stage Alzheimer's disease'. Together they form a unique fingerprint.

Cite this