Taking the plunge: Chemical reaction dynamics in liquids

Andrew Orr-Ewing*

*Corresponding author for this work

Research output: Contribution to journalReview article (Academic Journal)peer-review

43 Citations (Scopus)
552 Downloads (Pure)

Abstract

The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.

Original languageEnglish
Pages (from-to)7597-7614
Number of pages18
JournalChemical Society Reviews
Volume46
Issue number24
Early online date6 Jul 2017
DOIs
Publication statusPublished - 21 Dec 2017

Fingerprint

Dive into the research topics of 'Taking the plunge: Chemical reaction dynamics in liquids'. Together they form a unique fingerprint.

Cite this