## Abstract

We study the cumulants and their generating functions of the probability

distributions of the conductance, shot noise and Wigner delay time in ballistic quantum dots. Our approach is based on the integrable theory of certain matrix integrals and applies to all the symmetry classes 2 f1; 2; 4g of Random Matrix Theory. We compute the weak localization corrections to the mixed cumulants of the conductance and shot noise for = 1; 4, thus proving a number of conjectures of Khoruzhenko et al. [51]. We derive dierential equations that characterize the cumulant generating functions for all 2 f1; 2; 4g. Furthermore, when = 2 we show that the cumulant generating function of the Wigner delay time can be expressed in terms of the Painleve III0 transcendant. This

allows us to study properties of the cumulants of the Wigner delay time in the asymptotic limit n ! 1. Finally, for all the symmetry classes and for any number of open channels, we derive a set of recurrence relations that are very efficient for computing cumulants at all orders.

C

distributions of the conductance, shot noise and Wigner delay time in ballistic quantum dots. Our approach is based on the integrable theory of certain matrix integrals and applies to all the symmetry classes 2 f1; 2; 4g of Random Matrix Theory. We compute the weak localization corrections to the mixed cumulants of the conductance and shot noise for = 1; 4, thus proving a number of conjectures of Khoruzhenko et al. [51]. We derive dierential equations that characterize the cumulant generating functions for all 2 f1; 2; 4g. Furthermore, when = 2 we show that the cumulant generating function of the Wigner delay time can be expressed in terms of the Painleve III0 transcendant. This

allows us to study properties of the cumulants of the Wigner delay time in the asymptotic limit n ! 1. Finally, for all the symmetry classes and for any number of open channels, we derive a set of recurrence relations that are very efficient for computing cumulants at all orders.

C

Original language | English |
---|---|

Pages (from-to) | 465-513 |

Number of pages | 49 |

Journal | Communications in Mathematical Physics |

Volume | 324 |

Issue number | 2 |

DOIs | |

Publication status | Published - Dec 2013 |