Temperature dependence of magnetic anisotropy: An ab initio approach

JB Staunton, L Szunyogh, A Buruzs, BL Gyorffy, S Ostanin, L Udvardi

Research output: Contribution to journalArticle (Academic Journal)peer-review

133 Citations (Scopus)


We present a first-principles theory of the variation of magnetic anisotropy, K, with temperature, T, in metallic ferromagnets. It is based on relativistic electronic structure theory and calculation of magnetic torque. Thermally induced local moment magnetic fluctuations are described within the relativistic generalization of the disordered local moment theory from which the T dependence of the magnetization, m, is found. We apply the theory to a uniaxial magnetic material with tetragonal crystal symmetry, L10-ordered FePd, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pd layers for all m and proportional to m2 for a broad range of values of m. This is the same trend that we have previously found in L10-ordered FePt and which agrees with experiment. We also study a magnetically soft cubic magnet, the Fe50Pt50 solid solution, and find that its small magnetic anisotropy constant K1 rapidly diminishes from 8 µeV to zero. K1 evolves from being proportional to m7 at low T to m4 near the Curie temperature. The accounts of both the tetragonal and cubic itinerant electron magnets differ from those extracted from single ion anisotropy models and instead receive clear interpretations in terms of two ion anisotropic exchange.
Translated title of the contributionTemperature dependence of magnetic anisotropy: An ab initio approach
Original languageEnglish
Pages (from-to)144411-1 - 144411-13
Number of pages13
JournalPhysical Review B: Condensed Matter and Materials Physics
Publication statusPublished - Oct 2006

Fingerprint Dive into the research topics of 'Temperature dependence of magnetic anisotropy: An ab initio approach'. Together they form a unique fingerprint.

Cite this