The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.

Bethany Nancolas, Andrew Halestrap

Research output: Contribution to journalArticle (Academic Journal)peer-review

49 Citations (Scopus)
258 Downloads (Pure)


Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitizing tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, whereas indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). In the present study, we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5 μM) and co-operatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill coefficient values of 36–40 μM and 1.65–1.85 respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50 ∼ 7 μM) than other substrates including glutamate (IC50 ∼ 20 μM). In isolated DB-1 melanoma cells 1–10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output whereas increasing intracellular [L-lactate] > 5-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND on L-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate (CHC).
Original languageEnglish
Pages (from-to)929-936
Number of pages8
JournalBiochemical Journal
Publication statusPublished - 29 Mar 2016


  • bioenergetics
  • cancer
  • metabolism
  • mitochondrial pyruvate carrier
  • monocarboxylate transporter
  • tumour acidification


Dive into the research topics of 'The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.'. Together they form a unique fingerprint.

Cite this