Abstract
We characterize the capacity for the discrete-time arbitrarily varying channel with discrete inputs, outputs, and states when (a) the encoder and decoder do not share common randomness, (b) the input and state are subject to cost constraints, (c) the transition matrix of the channel is deterministic given the state, and (d) at each time step the adversary can only observe the current and past channel inputs when choosing the state at that time. The achievable strategy involves stochastic encoding together with list decoding and a disambiguation step. The converse uses a two-phase "babble-and-push"strategy where the adversary chooses the state randomly in the first phase, list decodes the output, and then chooses state inputs to symmetrize the channel in the second phase. These results generalize prior work on specific channels models (additive, erasure) to general discrete alphabets and models.
Original language | English |
---|---|
Title of host publication | 2022 IEEE International Symposium on Information Theory, ISIT 2022 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 2523-2528 |
Number of pages | 6 |
ISBN (Electronic) | 9781665421591 |
DOIs | |
Publication status | Published - 2022 |
Event | 2022 IEEE International Symposium on Information Theory, ISIT 2022 - Espoo, Finland Duration: 26 Jun 2022 → 1 Jul 2022 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
Volume | 2022-June |
ISSN (Print) | 2157-8095 |
Conference
Conference | 2022 IEEE International Symposium on Information Theory, ISIT 2022 |
---|---|
Country/Territory | Finland |
City | Espoo |
Period | 26/06/22 → 1/07/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
Keywords
- arbitrarily varying channels
- channel capacity
- jamming