The competition between gravity and flow focusing in two-layered porous media

Herbert E. Huppert*, Jerome A. Neufeld, Charlotte Strandkvist

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

23 Citations (Scopus)


The gravitationally driven flow of a dense fluid within a two-layered porous media is examined experimentally and theoretically. We find that in systems with two horizontal layers of differing permeability a competition between gravity driven flow and flow focusing along high-permeability routes can lead to two distinct flow regimes. When the lower layer is more permeable than the upper layer, gravity acts along high-permeability pathways and the flow is enhanced in the lower layer. Alternatively, when the upper layer is more permeable than the lower layer, we find that for a sufficiently small input flux the flow is confined to the lower layer. However, above a critical flux fluid preferentially spreads horizontally within the upper layer before ultimately draining back down into the lower layer. This later regime, in which the fluid overrides the low-permeability lower layer, is important because it enhances the mixing of the two fluids. We show that the critical flux which separates these two regimes can be characterized by a simple power law. Finally, we briefly discuss the relevance of this work to the geological sequestration of carbon dioxide and other industrial and natural flows in porous media.

Original languageEnglish
Pages (from-to)5-14
Number of pages10
JournalJournal of Fluid Mechanics
Publication statusPublished - Apr 2013


  • geophysical and geological flows
  • gravity currents
  • porous media


Dive into the research topics of 'The competition between gravity and flow focusing in two-layered porous media'. Together they form a unique fingerprint.

Cite this