TY - JOUR
T1 - The distribution, clearance, and brainstem toxicity of panobinostat administered by convection-enhanced delivery
AU - Singleton, William G.B.
AU - Bienemann, Alison S.
AU - Woolley, Max
AU - Johnson, David
AU - Lewis, Owen
AU - Wyatt, Marcella J.
AU - Damment, Stephen J.P.
AU - Boulter, Lisa J.
AU - Killick-Cole, Clare L.
AU - Asby, Daniel J.
AU - Gill, Steven S.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - OBJECTIVE The pan-histone deacetylase inhibitor panobinostat has preclinical efficacy against diffuse intrinsic pontine glioma (DIPG), and the oral formulation has entered a Phase I clinical trial. However, panobinostat does not cross the blood-brain barrier in humans. Convection-enhanced delivery (CED) is a novel neurosurgical drug delivery technique that bypasses the blood-brain barrier and is of considerable clinical interest in the treatment of DIPG. METHODS The authors investigated the toxicity, distribution, and clearance of a water-soluble formulation of panobinostat (MTX110) in a small- and large-animal model of CED. Juvenile male Wistar rats (n = 24) received panobinostat administered to the pons by CED at increasing concentrations and findings were compared to those in animals that received vehicle alone (n = 12). Clinical observation continued for 2 weeks. Animals were sacrificed at 72 hours or 2 weeks following treatment, and the brains were subjected to neuropathological analysis. A further 8 animals received panobinostat by CED to the striatum and were sacrificed 0, 2, 6, or 24 hours after infusion, and their brains explanted and snap-frozen. Tissue-drug concentration was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Large-animal toxicity was investigated using a clinically relevant MRI-guided translational porcine model of CED in which a drug delivery system designed for humans was used. Panobinostat was administered at 30 μM to the ventral pons of 2 juvenile Large White-Landrace cross pigs. The animals were subjected to clinical and neuropathological analysis, and findings were compared to those obtained in controls after either 1 or 2 weeks. Drug distribution was determined by LC-MS/MS in porcine white and gray matter immediately after CED. RESULTS There were no clinical or neuropathological signs of toxicity up to an infused concentration of 30 μM in both small- and large-animal models. The half-life of panobinostat in rat brain after CED was 2.9 hours, and the drug was observed to be distributed in porcine white and gray matter with a volume infusion/distribution ratio of 2 and 3, respectively. CONCLUSIONS CED of water-soluble panobinostat, up to a concentration of 30 μM, was not toxic and was distributed effectively in normal brain. CED of panobinostat warrants clinical investigation in patients with DIPG.
AB - OBJECTIVE The pan-histone deacetylase inhibitor panobinostat has preclinical efficacy against diffuse intrinsic pontine glioma (DIPG), and the oral formulation has entered a Phase I clinical trial. However, panobinostat does not cross the blood-brain barrier in humans. Convection-enhanced delivery (CED) is a novel neurosurgical drug delivery technique that bypasses the blood-brain barrier and is of considerable clinical interest in the treatment of DIPG. METHODS The authors investigated the toxicity, distribution, and clearance of a water-soluble formulation of panobinostat (MTX110) in a small- and large-animal model of CED. Juvenile male Wistar rats (n = 24) received panobinostat administered to the pons by CED at increasing concentrations and findings were compared to those in animals that received vehicle alone (n = 12). Clinical observation continued for 2 weeks. Animals were sacrificed at 72 hours or 2 weeks following treatment, and the brains were subjected to neuropathological analysis. A further 8 animals received panobinostat by CED to the striatum and were sacrificed 0, 2, 6, or 24 hours after infusion, and their brains explanted and snap-frozen. Tissue-drug concentration was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Large-animal toxicity was investigated using a clinically relevant MRI-guided translational porcine model of CED in which a drug delivery system designed for humans was used. Panobinostat was administered at 30 μM to the ventral pons of 2 juvenile Large White-Landrace cross pigs. The animals were subjected to clinical and neuropathological analysis, and findings were compared to those obtained in controls after either 1 or 2 weeks. Drug distribution was determined by LC-MS/MS in porcine white and gray matter immediately after CED. RESULTS There were no clinical or neuropathological signs of toxicity up to an infused concentration of 30 μM in both small- and large-animal models. The half-life of panobinostat in rat brain after CED was 2.9 hours, and the drug was observed to be distributed in porcine white and gray matter with a volume infusion/distribution ratio of 2 and 3, respectively. CONCLUSIONS CED of water-soluble panobinostat, up to a concentration of 30 μM, was not toxic and was distributed effectively in normal brain. CED of panobinostat warrants clinical investigation in patients with DIPG.
KW - Brainstem
KW - Convection-enhanced delivery
KW - DIPG
KW - Half-life
KW - HDAC inhibitor
KW - Histone deacetylase inhibitor
KW - Oncology
KW - Panobinostat
KW - Toxicity
KW - Translation
KW - Volume of distribution
UR - http://www.scopus.com/inward/record.url?scp=85052690550&partnerID=8YFLogxK
U2 - 10.3171/2018.2.PEDS17663
DO - 10.3171/2018.2.PEDS17663
M3 - Article (Academic Journal)
C2 - 29856296
SN - 1933-0707
VL - 22
SP - 288
EP - 296
JO - Journal of Neurosurgery: Pediatrics
JF - Journal of Neurosurgery: Pediatrics
IS - 3
ER -