The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc

Huw Pullin, Richard Crane, David Morgan, Tom Scott

Research output: Contribution to journalArticle (Academic Journal)

24 Citations (Scopus)
222 Downloads (Pure)

Abstract

This work has investigated the influence of common groundwater anions (Cl-, NO3-, SO42- and HCO3-) on the corrosion behaviour and associated removal of copper (Cu) and zinc (Zn) ions onto nanoscale zero-valent iron particles (nZVI). After 16 week exposure to solutions containing each anion at 10 mM concentrations, nZVI was observed to corrode into different iron (hydr)oxide phases (determined using XRD), depending upon the anion present: HNO3- produced goethite particles; NO3- produced predominantly magnetite/maghemite particles; both SO42- and Cl- produced a mixture of phases, including magnetite/maghemite, lepidocrocite and goethite. For solutions containing the different anions and 0.3 mM concentrations of Cu or Zn, near-total metal removal onto nZVI was recorded in the initial stages of the reaction (e.g. <24 hrs) for all systems tested. However, when Cl- and SO42- were also present significant subsequent desorption was recorded and attributed to the influence of anionic pitting corrosion. In contrast, no Cu or Zn desorption was recorded for batch systems containing NO3-, which was attributed to the enmeshment of Cu or Zn in a mixed-valent iron oxide shell. Results herein therefore demonstrate that NO3- could be utilised alongside nZVI to improve its long-term performance for in situ water treatment applications.
Original languageEnglish
Pages (from-to)1166–1173
Number of pages8
JournalJournal of Environmental Chemical Engineering
Volume5
Issue number1
Early online date31 Jan 2017
DOIs
Publication statusPublished - Feb 2017

Keywords

  • Iron nanoparticles
  • Anionic effects on corrosion
  • Groundwater
  • Phase transition pathways
  • Cu and Zn sorption behaviour

Fingerprint Dive into the research topics of 'The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc'. Together they form a unique fingerprint.

  • Cite this