Projects per year
Abstract
The motivation for this work is the development of load measurement techniques based on the velocity of propagating guided waves in structural members such as cable and rail. A finite element technique for modelling the dispersion characteristics of guided waves in a waveguide of arbitrary cross section subjected to axial load is presented. The results from the FE model are compared to results obtained from a simple EulerBernoulli beam model. A dimensionless measure of the sensitivity of phase and group velocity to load is defined as the fractional change in velocity divided by the applied strain. At frequency waveguidecharacteristicdimension products (fd) of greater than around 1 for phase velocity and 5 for group velocity the sensitivity to strain levels likely to be encountered in engineering materials is strain independent (indicating that the change in velocity is proportional to strain) and decreases with increasing frequency. In this fd range, phase velocity increases under tensile loading and group velocity decreases. For waveguides with simple cross sections, such as plates and circular rods, it is shown that the EulerBernoulli beam model provides acceptable results over the majority of the fd range where there is measurable sensitivity to load. However, for waveguides with more complex cross sections such as rail, the EulerBernoulli beam model is less satisfactory. In particular, it does not predict the subtleties of the sensitivity of certain modes at high frequencies, nor any sensitivity for the torsional fundamental mode.
Translated title of the contribution  The effect of load on guided wave propagation 

Original language  English 
Pages (fromto)  111  122 
Number of pages  12 
Journal  Ultrasonics 
Volume  47 
DOIs  
Publication status  Published  Dec 2007 
Fingerprint Dive into the research topics of 'The effect of load on guided wave propagation'. Together they form a unique fingerprint.
Projects
 1 Finished

LOAD MEASUREMENT IN STRUCTURAL MEMBERS USING GUIDED ACOUSTIC WAVES
1/03/04 → 1/03/07
Project: Research