Abstract
Currents of particles have been quite successfully modelled using techniques developed
for fluid gravity currents. These models require the rheology of the currents
to be specified, which is determined by the interaction between particles. For relatively
small, slow currents this is determined primarily through friction, which can
be controlled and reduced by fluidizing the particles, which then become much more
mobile. Recent results cannot be predicted using many of the proposed models, and
may be defined by the interaction between the particles and the fluid through which
they are passing. However, in addition, particles that are only initially fluidized also
form currents that are also mobile, but otherwise are different from continuously
fluidized currents. The mobility of these currents appears not to be connected to the
time taken for them to degas. This suggests that defining the continuous stresses
on the particle current may not be sufficient to understand its motion and that a
challenge for the future is understanding the structure of these flows and how this
affects their motion.
Translated title of the contribution | The effects of gas flow on granular currents |
---|---|
Original language | English |
Pages (from-to) | 2191 - 2204 |
Number of pages | 13 |
Journal | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Volume | 366 |
Issue number | 1873 |
DOIs | |
Publication status | Published - Jun 2008 |