The effects of gas flow on granular currents

Research output: Contribution to journalArticle (Academic Journal)peer-review

6 Citations (Scopus)


Currents of particles have been quite successfully modelled using techniques developed for fluid gravity currents. These models require the rheology of the currents to be specified, which is determined by the interaction between particles. For relatively small, slow currents this is determined primarily through friction, which can be controlled and reduced by fluidizing the particles, which then become much more mobile. Recent results cannot be predicted using many of the proposed models, and may be defined by the interaction between the particles and the fluid through which they are passing. However, in addition, particles that are only initially fluidized also form currents that are also mobile, but otherwise are different from continuously fluidized currents. The mobility of these currents appears not to be connected to the time taken for them to degas. This suggests that defining the continuous stresses on the particle current may not be sufficient to understand its motion and that a challenge for the future is understanding the structure of these flows and how this affects their motion.
Translated title of the contributionThe effects of gas flow on granular currents
Original languageEnglish
Pages (from-to)2191 - 2204
Number of pages13
JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Issue number1873
Publication statusPublished - Jun 2008

Bibliographical note

Publisher: The Royal Society


Dive into the research topics of 'The effects of gas flow on granular currents'. Together they form a unique fingerprint.

Cite this