TY - JOUR
T1 - The energy budgets of giant impacts
AU - Carter, Philip
AU - Lock, Simon
AU - Stewart, Sarah T
PY - 2019/12/17
Y1 - 2019/12/17
N2 - Giant impacts dominate the final stages of terrestrial planet formation and set the configuration and compositions of the final system of planets. A giant impact is believed to be responsible for the formation of Earth's Moon, but the specific impact parameters are under debate. Because the canonical Moon-forming impact is the most intensely studied scenario, it is often considered the archetypal giant impact. However, a wide range of impacts with different outcomes are possible. Here we examine the total energy budgets of giant impacts that form Earth-mass bodies and find that they differ substantially across the wide range of possible Moon-forming events. We show that gravitational potential energy exchange is important, and we determine the regime in which potential energy has a significant effect on the collision outcome. Energy is deposited heterogeneously within the colliding planets, increasing their internal energies, and portions of each body attain sufficient entropy for vaporization. After gravitational re-equilibration, post-impact bodies are strongly thermally stratified, with varying amounts of vaporized and supercritical mantle. The canonical Moon-forming impact is a relatively low-energy event and should not be considered the archetype of accretionary giant impacts that form Earth-mass planets. After a giant impact, bodies are significantly inflated in size compared to condensed planets of the same mass, and there are substantial differences in the magnitudes of their potential, kinetic, and internal energy components. As a result, the conditions for metal-silicate equilibration and the subsequent evolution of the planet may vary widely between different impact scenarios.
AB - Giant impacts dominate the final stages of terrestrial planet formation and set the configuration and compositions of the final system of planets. A giant impact is believed to be responsible for the formation of Earth's Moon, but the specific impact parameters are under debate. Because the canonical Moon-forming impact is the most intensely studied scenario, it is often considered the archetypal giant impact. However, a wide range of impacts with different outcomes are possible. Here we examine the total energy budgets of giant impacts that form Earth-mass bodies and find that they differ substantially across the wide range of possible Moon-forming events. We show that gravitational potential energy exchange is important, and we determine the regime in which potential energy has a significant effect on the collision outcome. Energy is deposited heterogeneously within the colliding planets, increasing their internal energies, and portions of each body attain sufficient entropy for vaporization. After gravitational re-equilibration, post-impact bodies are strongly thermally stratified, with varying amounts of vaporized and supercritical mantle. The canonical Moon-forming impact is a relatively low-energy event and should not be considered the archetype of accretionary giant impacts that form Earth-mass planets. After a giant impact, bodies are significantly inflated in size compared to condensed planets of the same mass, and there are substantial differences in the magnitudes of their potential, kinetic, and internal energy components. As a result, the conditions for metal-silicate equilibration and the subsequent evolution of the planet may vary widely between different impact scenarios.
KW - giant impact
KW - energy
KW - thermodynamics
UR - http://dx.doi.org/10.1029/2019je006042
UR - https://arxiv.org/abs/1912.04936
U2 - 10.1029/2019je006042
DO - 10.1029/2019je006042
M3 - Article (Academic Journal)
SN - 2169-9097
VL - 125
JO - Journal of Geophysical Research: Planets
JF - Journal of Geophysical Research: Planets
M1 - e2019JE006042
ER -