Abstract
Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, Cancers 2015, 7 1886 these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.
Original language | English |
---|---|
Pages (from-to) | 1885-99 |
Number of pages | 15 |
Journal | Cancers |
Volume | 7 |
Issue number | 3 |
DOIs | |
Publication status | Published - 17 Sept 2015 |
Keywords
- Journal Article
Fingerprint
Dive into the research topics of 'The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells'. Together they form a unique fingerprint.Profiles
-
Professor Ann C Williams
- School of Cellular and Molecular Medicine - Professor of Experimental Oncology
- Cancer
- Dynamic Cell Biology
Person: Academic , Member