Skip to content

The non-chondritic Ni isotopic composition of the Earth's mantle

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)405-421
Number of pages17
JournalGeochimica et Cosmochimica Acta
Volume268
Early online date21 Oct 2019
DOIs
DateSubmitted - 2019
DateAccepted/In press - 10 Oct 2019
DateE-pub ahead of print - 21 Oct 2019
DatePublished (current) - 1 Jan 2020

Abstract

Nickel is a major element in the Earth. Due to its siderophile nature, 93% of Ni is hosted in the core and the Ni isotope composition of the bulk silicate Earth might inform on the conditions of terrestrial core formation. Whether Earth’s mantle is fractionated relative to the chondritic reservoir, and by inference to the core, is a matter of debate that largely arises from the uncertain Ni isotope composition of the mantle. We address this issue through high-precision Ni isotope measurements of fertile- to melt-depleted peridotites and compare these data to chondritic meteorites. Terrestrial peridotites that are free from metasomatic overprint display a limited range in δ60/58Ni (deviation of 60Ni/58Ni relative to NIST SRM 986) and no systematic variation with degree of melt depletion. The latter is consistent with olivine and orthopyroxene buffering the Ni budget and isotope composition of the refractory peridotites. As such, the average Ni isotope composition of these peridotites (δ60/58Ni = 0.115 ± 0.011‰) provides a robust estimate of the δ60/58Ni of the bulk silicate Earth. Peridotites with evidence for melt metasomatism range to heavier Ni isotope compositions where the introduction of clinopyroxene appears to drive an increase in δ60/58Ni. This requires a process where melts do not reach isotopic equilibrium with buffering olivine and orthopyroxene, but its exact nature remains obscure. Chondritic meteorites have variability in δ60/58Ni due to heterogeneity at the sampling scale. In particular, CI1 chondrites are displaced to isotopically lighter values due to sorption of Ni onto ferrihydrite during parent body alteration. Chondrites less extensively altered than the CI1 chondrites show no systematic differences in δ60/58Ni between classes and yield average δ60/58Ni = 0.212 ± 0.013‰, which is isotopically heavier than our estimate of the bulk silicate Earth. The notable isotopic difference between the bulk silicate Earth and chondrites likely results from the segregation of the terrestrial core. Our observations potentially provide a novel constraint on the conditions of terrestrial core formation but requires further experimental calibration.

    Research areas

  • Ni mass-dependent isotope variations, Bulk silicate Earth, Peridotites, Chondrites, Core formation

Documents

Documents

  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0016703719306611. Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 524 KB, PDF document

    Embargo ends: 21/10/20

    Request copy

    Licence: CC BY-NC-ND

DOI

View research connections

Related faculties, schools or groups