TY - JOUR

T1 - The pMSSM10 after LHC Run 1

AU - Vries, K. J. de

AU - Bagnaschi, E. A.

AU - Buchmueller, O.

AU - Cavanaugh, R.

AU - Citron, M.

AU - Roeck, A. De

AU - Dolan, M. J.

AU - Ellis, J. R.

AU - Flaecher, H.

AU - Heinemeyer, S.

AU - Isidori, G.

AU - Malik, S.

AU - Marrouche, J.

AU - Santos, D. Martinez

AU - Olive, K. A.

AU - Sakurai, K.

AU - Weiglein, G.

N1 - 47 pages, 29 figures

PY - 2015/9/15

Y1 - 2015/9/15

N2 - We present a frequentist analysis of the parameter space of the pMSSM10, in which the following 10 soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale Msusy = Sqrt[M_stop1 M_stop2]: the gaugino masses M_{1,2,3}, the 1st-and 2nd-generation squark masses M_squ1 = M_squ2, the third-generation squark mass M_squ3, a common slepton mass M_slep and a common trilinear mixing parameter A, the Higgs mixing parameter mu, the pseudoscalar Higgs mass M_A and tan beta. We use the MultiNest sampling algorithm with 1.2 x 10^9 points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly-interacting SUSY masses of ATLAS and CMS searches for jets, leptons + MET signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for EW-interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements B-physics observables, EW precision observables, the CDM density and searches for spin-independent DM scattering. We show that the pMSSM10 is able to provide a SUSY interpretation of (g-2)_mu, unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi^2/dof = 20.5/18 in the pMSSM10, corresponding to a chi^2 probability of 30.8 %, to be compared with chi^2/dof = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1) (NUHM2). We display 1-dimensional likelihood functions for SUSY masses, and show that they may be significantly lighter in the pMSSM10 than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e- colliders and direct detection experiments.

AB - We present a frequentist analysis of the parameter space of the pMSSM10, in which the following 10 soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale Msusy = Sqrt[M_stop1 M_stop2]: the gaugino masses M_{1,2,3}, the 1st-and 2nd-generation squark masses M_squ1 = M_squ2, the third-generation squark mass M_squ3, a common slepton mass M_slep and a common trilinear mixing parameter A, the Higgs mixing parameter mu, the pseudoscalar Higgs mass M_A and tan beta. We use the MultiNest sampling algorithm with 1.2 x 10^9 points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly-interacting SUSY masses of ATLAS and CMS searches for jets, leptons + MET signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for EW-interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements B-physics observables, EW precision observables, the CDM density and searches for spin-independent DM scattering. We show that the pMSSM10 is able to provide a SUSY interpretation of (g-2)_mu, unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi^2/dof = 20.5/18 in the pMSSM10, corresponding to a chi^2 probability of 30.8 %, to be compared with chi^2/dof = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1) (NUHM2). We display 1-dimensional likelihood functions for SUSY masses, and show that they may be significantly lighter in the pMSSM10 than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e- colliders and direct detection experiments.

KW - hep-ph

KW - astro-ph.HE

KW - hep-ex

U2 - 10.1140/epjc/s10052-015-3599-y

DO - 10.1140/epjc/s10052-015-3599-y

M3 - Article (Academic Journal)

C2 - 26543402

VL - 75

JO - European Physical Journal C: Particles and Fields

JF - European Physical Journal C: Particles and Fields

SN - 1434-6044

M1 - 422

ER -