The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes

Joseph T P Yeeles, Mark S Dillingham

Research output: Contribution to journalArticle (Academic Journal)

54 Citations (Scopus)

Abstract

Double-stranded DNA breaks are prepared for recombinational repair by nucleolytic digestion to form single-stranded DNA overhangs that are substrates for RecA/Rad51-mediated strand exchange. This processing can be achieved through the activities of multiple helicases and nucleases. In bacteria, the function is mainly provided by a stable multi-protein complex of which there are two structural classes; AddABand RecBCD-type enzymes. These helicase–nucleases are of special interest with respect to DNA helicase mechanism because they are exceptionally powerful DNA translocation motors, and because they serve as model systems for both single molecule studies and for understanding how DNA helicases can be coupled to other protein machinery. This review discusses recent developments in our understanding of the AddAB and RecBCD complexes, focussing on their distinctive strategies for processing DNA ends. We also discuss the extent to which bacterial DNA end resection mechanisms may parallel those used in eukaryotic cells.
Translated title of the contributionThe processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes
Original languageEnglish
Pages (from-to)276 - 285
Number of pages10
JournalDNA Repair
Volume9
Issue number3
DOIs
Publication statusPublished - Mar 2010

Fingerprint Dive into the research topics of 'The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes'. Together they form a unique fingerprint.

  • Cite this