The regulation of glial-specific splicing of Neurexin IV requires HOW and Cdk12 activity

Floriano Rodrigues, Leila J M Thuma, Christian Klämbt

Research output: Contribution to journalArticle (Academic Journal)peer-review

28 Citations (Scopus)

Abstract

The differentiation of the blood-brain barrier (BBB) is an essential process in the development of a complex nervous system and depends on alternative splicing. In the fly BBB, glial cells establish intensive septate junctions that require the cell-adhesion molecule Neurexin IV. Alternative splicing generates two different Neurexin IV isoforms: Neurexin IV(exon3), which is found in cells that form septate junctions, and Neurexin IV(exon4), which is found in neurons that form no septate junctions. Here, we show that the formation of the BBB depends on the RNA-binding protein HOW (Held out wings), which triggers glial specific splicing of Neurexin IV(exon3). Using a set of splice reporters, we show that one HOW-binding site is needed to include one of the two mutually exclusive exons 3 and 4, whereas binding at the three further motifs is needed to exclude exon 4. The differential splicing is controlled by nuclear access of HOW and can be induced in neurons following expression of nuclear HOW. Using a novel in vivo two-color splicing detector, we then screened for genes required for full HOW activity. This approach identified Cyclin-dependent kinase 12 (Cdk12) and the splicesosomal component Prp40 as major determinants in regulating HOW-dependent splicing of Neurexin IV. Thus, in addition to the control of nuclear localization of HOW, the phosphorylation of the C-terminal domain of the RNA polymerase II by Cdk12 provides an elegant mechanism in regulating timed splicing of newly synthesized mRNA molecules.

Original languageEnglish
Pages (from-to)1765-76
Number of pages12
JournalDevelopment (Cambridge)
Volume139
Issue number10
DOIs
Publication statusPublished - May 2012

Keywords

  • Animals
  • Cell Adhesion Molecules, Neuronal
  • Cyclin-Dependent Kinases
  • Drosophila
  • Drosophila Proteins
  • Immunohistochemistry
  • Neuroglia
  • Nuclear Proteins
  • RNA Splicing
  • RNA-Binding Proteins
  • Reverse Transcriptase Polymerase Chain Reaction

Fingerprint

Dive into the research topics of 'The regulation of glial-specific splicing of Neurexin IV requires HOW and Cdk12 activity'. Together they form a unique fingerprint.

Cite this