The Renyi entropy in data-driven analysis for pharmacological MRI

McGonigle John, Majid Mirmehdi, Holmes Robin, Malizia Andrea L.

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

Abstract

The analysis of pharmacological MRI (phMRI) traditionally depends upon the use of an appropriate input function, usually derived from blood plasma concentrations of the drug used in the experiment. There are a number of problems with this approach including the relationship between plasma and brain concentrations and the longer term effects of receptor activation. Because of this a number of data-driven approaches have been used where no model of the neural response is known a priori such as independent component analysis and wavelet cluster analysis. Here we explore the use of a measure of signal complexity known as the Renyi entropy to discover voxels of interest in a data-driven manner using a dataset known to show reduced perfusion in the hippocampus.
Translated title of the contributionThe Renyi entropy in data-driven analysis for pharmacological MRI
Original languageEnglish
Title of host publicationJoint Annual Meeting ISMRM-ESMRMB
Publication statusPublished - 2010

Bibliographical note

Other page information: -
Conference Proceedings/Title of Journal: Joint Annual Meeting ISMRM-ESMRMB
Other identifier: 2001203

Fingerprint

Dive into the research topics of 'The Renyi entropy in data-driven analysis for pharmacological MRI'. Together they form a unique fingerprint.

Cite this