Projects per year
Abstract
Photoinduced damage of DNA is a well-known but still far from fully understood phenomenon. Electronic structure methods are here employed to investigate potential roles of πσ∗ states in initiating photodamage, and ways in which πσ∗-state driven photochemistry might evolve with increasing molecular complexity. The study starts with the bare 9H-adenine molecule and progresses through to a model double-helix DNA duplex in aqueous solution. Relative to the gas phase, aqueous solvation is predicted to stabilize the 1πσ∗ states of these systems when exciting at the respective ground state equilibrium geometries, but to have relatively little effect on the asymptotic NH bond strengths. But the study also re-emphasises the potential importance of rival σ∗ ← π excitations, wherein a solute π electron is promoted to a σ∗ orbital localized on an OH bond of a complexing H2O molecule, as a route to forming parent radical cations – as have recently been observed following near UV photoexcitation of double-helix adenine-thymine duplexes in water (Banyasz et al., 2018). The subsequent deprotonation of such radical cations offers a rival low energy route to NH bond fission and radical formation in such duplexes.
Original language | English |
---|---|
Pages (from-to) | 464-471 |
Number of pages | 8 |
Journal | Chemical Physics |
Volume | 515 |
Early online date | 11 Aug 2018 |
DOIs | |
Publication status | Published - 14 Nov 2018 |
Fingerprint
Dive into the research topics of 'The Role of 1πσ* States in the Formation of Adenine Radical-Cations in DNA Duplexes'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Chemical Applications of Velocity & Spatial Imaging
Orr-Ewing, A. J. & Ashfold, M. N. R.
8/01/14 → 31/12/19
Project: Research