Abstract
A key computation underlying perceptual decisions is the temporal integration of "evidence" in favor of different states of the world. Studies from psychology and neuroscience have shown that observers integrate multiple samples of noisy perceptual evidence over time toward a decision. An influential model posits perfect evidence integration (i.e., without forgetting), enabling optimal decisions based on stationary evidence. However, in real-life environments, the perceptual evidence typically changes continuously. We used a computational model to show that, under such conditions, performance can be improved by means of leaky (forgetful) integration, if the integration timescale is adapted toward the predominant signal duration. We then tested whether human observers employ such an adaptive integration process. Observers had to detect visual luminance "signals" of variable strength, duration, and onset latency, embedded within longer streams of noise. Different sessions entailed predominantly short or long signals. The rate of performance improvement as a function of signal duration indicated that observers indeed changed their integration timescale with the predominant signal duration, in accordance with the adaptive integration account. Our findings establish that leaky integration of perceptual evidence is flexible and that cognitive control mechanisms can exploit this flexibility for optimizing the decision process.
Original language | English |
---|---|
Pages (from-to) | 981-6 |
Number of pages | 6 |
Journal | Current Biology |
Volume | 23 |
Issue number | 11 |
DOIs | |
Publication status | Published - 3 Jun 2013 |
Bibliographical note
Copyright © 2013 Elsevier Ltd. All rights reserved.Keywords
- Adult
- Decision Making
- Discrimination, Psychological
- Female
- Humans
- Male
- Models, Neurological
- Photic Stimulation
- Reaction Time
- Visual Perception
- Young Adult