Abstract
Although repetitive elements pervade mammalian genomes, their overall contribution to transcriptional activity is poorly defined. Here, as part of the FANTOM4 project, we report that 6–30% of cap-selected mouse and human RNA transcripts initiate within repetitive elements. Analysis of approximately 250,000 retrotransposon-derived transcription start sites shows that the associated transcripts are generally tissue specific, coincide with gene-dense regions and form pronounced clusters when aligned to full-length retrotransposon sequences. Retrotransposons located immediately 5' of protein-coding loci frequently function as alternative promoters and/or express noncoding RNAs. More than a quarter of RefSeqs possess a retrotransposon in their 3' UTR, with strong evidence for the reduced expression of these transcripts relative to retrotransposon-free transcripts. Finally, a genome-wide screen identifies 23,000 candidate regulatory regions derived from retrotransposons, in addition to more than 2,000 examples of bidirectional transcription. We conclude that retrotransposon transcription has a key influence upon the transcriptional output of the mammalian genome.
Translated title of the contribution | The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line |
---|---|
Original language | English |
Article number | - |
Journal | Nature Genetics |
Publication status | Published - 2009 |