Theoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductor lasers

CY Tsai, Ch Chen, TL Sung, CY Tsai, JM Rorison

Research output: Contribution to journalArticle (Academic Journal)peer-review

12 Citations (Scopus)

Abstract

A theoretical model is presented that is capable of simultaneously simulating the small-signal modulation response of the carrier density, photon density, electron temperature, hole temperature, populations of nonequilibrium longitudinal (LO) and transverse optical (TO) phonons at different wave vectors, and lattice temperature in semiconductor lasers. The phonon dynamics of nonequilibrium LO and TO phonons is calculated from first principles by considering the polar and deformation-potential interactions between carriers and optical phonons. Rate equations of the energy transfer among electrons, holes, photons, optical phonons, and acoustic phonons are given. The small-signal modulation responses of carrier and lattice temperatures are calculated. The different roles of carrier and lattice heating in semiconductor lasers are discussed.
Translated title of the contributionTheoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductor lasers
Original languageEnglish
Pages (from-to)596 - 605
Number of pages10
JournalIEEE Journal of Selected Topics in Quantum Electronics
Volume5 (3)
DOIs
Publication statusPublished - May 1999

Bibliographical note

Publisher: IEEE

Fingerprint Dive into the research topics of 'Theoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductor lasers'. Together they form a unique fingerprint.

Cite this