Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

James Hickey, Joachim Gottsmann, Haruhisa Nakamichi, Masato Iguchi

Research output: Contribution to journalArticle (Academic Journal)

24 Citations (Scopus)
287 Downloads (Pure)

Abstract

Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.
Original languageEnglish
Article number32691
Number of pages10
JournalScientific Reports
Volume6
DOIs
Publication statusPublished - 13 Sep 2016

Keywords

  • Geophysics
  • Natural hazards
  • Volcanology

Fingerprint Dive into the research topics of 'Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan'. Together they form a unique fingerprint.

  • Projects

    Cite this