TinyLev: A multi-emitter single-axis acoustic levitator

Research output: Contribution to journalArticle (Academic Journal)peer-review

129 Citations (Scopus)
510 Downloads (Pure)

Abstract

Acoustic levitation has the potential to enable novel studies due to its ability to hold a wide variety of substances against gravity under container-less conditions. It has found application in spectroscopy, chemistry, and the study of organisms in microgravity. Current levitators are constructed using Langevin horns that need to be manufactured to high tolerance with carefully matched resonant frequencies. This resonance condition is hard to maintain as their temperature changes due to transduction heating. In addition, Langevin horns are required to operate at high voltages (>100 V) which may cause problems in challenging experimental environments. Here, we design, build, and evaluate a single-axis levitator based on multiple, low-voltage (ca. 20 V), well-matched, and commercially available ultrasonic transducers. The levitator operates at 40 kHz in air and can trap objects above 2.2 g/cm3 densityand4mmindiameterwhilstconsuming10Wofinputpower.Levitationofwater,fusedsilica spheres, small insects, and electronic components is demonstrated. The device is constructed from low-cost off-the-shelf components and is easily assembled using 3D printed sections. Complete instructionsandapartlistareprovidedonhowtoassemblethelevitator.
Original languageEnglish
Article number085105
Number of pages6
JournalReview of Scientific Instruments
Volume88
DOIs
Publication statusPublished - 31 Aug 2017

Fingerprint

Dive into the research topics of 'TinyLev: A multi-emitter single-axis acoustic levitator'. Together they form a unique fingerprint.

Cite this