Total correlations of the diagonal ensemble herald the many-body localization transition

J. Goold, C. Gogolin, S. R. Clark, J. Eisert, A. Scardicchio, A. Silva

Research output: Contribution to journalArticle (Academic Journal)peer-review

56 Citations (Scopus)


The intriguing phenomenon of many-body localization (MBL) has attracted significant interest recently, but a complete characterization is still lacking. In this work we introduce the total correlations, a concept from quantum information theory capturing multipartite correlations, to the study of this phenomenon. We demonstrate that the total correlations of the diagonal ensemble provides a meaningful diagnostic tool to pin-down, probe, and better understand the MBL transition and ergodicity breaking in quantum systems. In particular, we show that the total correlations has sublinear dependence on the system size in delocalized, ergodic phases, whereas we find that it scales extensively in the localized phase developing a pronounced peak at the transition. We exemplify the power of our approach by means of an exact diagonalization study of a Heisenberg spin chain in a disordered field. By a finite size scaling analysis of the peak position and crossover point from log to linear scaling we collect evidence that ergodicity is broken before the MBL transition in this model.

Original languageEnglish
Article number180202
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number18
Publication statusPublished - 5 Nov 2015


Dive into the research topics of 'Total correlations of the diagonal ensemble herald the many-body localization transition'. Together they form a unique fingerprint.

Cite this