Abstract
Patients with inherited anemia and hemoglobinopathies (such as sickle cell disease and β-thalassemia) are treated with red blood cell (RBC) transfusions to alleviate their symptoms. Some of these patients may have rare blood group types or go on to develop alloimmune reactions, which can make it difficult to source compatible blood in the donor population. Laboratory-grown RBC represent a particularly attractive alternative which could satisfy an unmet clinical need. The challenge, however, is to produce - from a limited number of stem cells - the 2x1012 RBC required for a standard adult therapeutic dose. Encouraging progress has been made in RBC production from adult stem cells under good manufacturing practice. In 2011, the Douay group conducted a successful proof-of-principle mini-transfusion of autologous manufactured RBC in a single volunteer. In the UK, a trial is planned to assess whether manufactured RBC are equivalent to RBC produced naturally in donors, by testing an allogeneic mini-dose of laboratory-grown manufactured RBC in multiple volunteers. This review discusses recent progress in the erythroid culture field as well as opportunities for further scaling up of manufactured RBC production for transfusion practice.
Original language | English |
---|---|
Pages (from-to) | 2304-2311 |
Number of pages | 8 |
Journal | Haematologica |
Volume | 106 |
Issue number | 9 |
Early online date | 27 May 2021 |
DOIs | |
Publication status | Published - 1 Sep 2021 |
Bibliographical note
Funding Information:SP, CES and the work in AMT?s laboratory is funded in part by a National Institute for Health Research Blood and Transplant Research Unit (IS-BTU-1214-10032) in red blood cell products (University of Bristol) and NHSBT R&D grants(WP15-05; WP15-04). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
Publisher Copyright:
©2021 Ferrata Storti Foundation