Transient Absorption Spectroscopy of the Electron Transfer Step in the Photochemically Activated Polymerizations of N-ethylcarbazole and 9-phenylcarbazole

Georgia L Thornton, Ryan A Phelps, Andrew J Orr-Ewing*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

5 Citations (Scopus)
24 Downloads (Pure)


The polymerization of photoexcited N-ethylcarbazole (N-EC) in the presence of an electron acceptor begins with an electron transfer (ET) step to generate a radical cation of N-EC (N-EC+.). Here, the production of N-EC+. is studied on picosecond to nanosecond timescales after N-EC photoexcitation at a wavelength λex = 345 nm using transient electronic and vibrational absorption spectroscopy. The kinetics and mechanisms of ET to diphenyliodinium hexafluorophosphate (Ph2I+PF6-) or para-alkylated variants are examined in dichloromethane (DCM) and acetonitrile (ACN) solutions. The generation of N-EC+. is well described by a diffusional kinetic model based on Smoluchowski theory: with Ph2I+PF6-, the derived bimolecular rate coefficient for ET is kET = (1.8 ± 0.5) x 1010 M-1 s-1 in DCM, which is consistent with diffusion-limited kinetics. This ET occurs from the first excited singlet (S1) state of N-EC, in competition with intersystem crossing to populate the triplet (T1) state, from which ET may also arise. A faster component of the ET reaction suggests pre-formation of a ground-state complex between N-EC and the electron acceptor. In ACN, the contribution from pre-reaction complexes is smaller, and the derived ET rate coefficient is kET = (1.0 ± 0.3) x 1010 M-1 s-1. Corresponding measurements for solutions of photoexcited 9-phenylcarbazole (9-PC) and Ph2I+PF6- give kET = (5 ± 1) x 109 M-1 s-1 in DCM. Structural modifications of the electron acceptor to increase its steric bulk reduce the magnitude of kET: methyl and t-butyl additions to the para positions of the phenyl rings (para Me2Ph2I+PF6- and t-butyl-Ph2I+PF6-) respectively give kET = (1.2 ± 0.3) x 1010 M-1 s-1 and kET = (5.4 ± 1.5) x 109 M-1 s-1 for reaction with photoexcited N-EC in DCM. These reductions in kET are attributed to slower rates of diffusion or to steric constraints in the ET reaction.
Original languageEnglish
Pages (from-to)18378 - 18392
Number of pages15
JournalPhysical Chemistry Chemical Physics
Issue number34
Early online date5 Aug 2021
Publication statusPublished - 14 Sept 2021

Bibliographical note

Funding Information:
The ultrafast laser laboratory at the University of Bristol was funded by European Research Council Advanced Grant 290966 CAPRI. G. L. T. and R. P thank EPSRC for postgraduate studentship funding (EP/N509619/1).

Publisher Copyright:
© the Owner Societies.


Dive into the research topics of 'Transient Absorption Spectroscopy of the Electron Transfer Step in the Photochemically Activated Polymerizations of N-ethylcarbazole and 9-phenylcarbazole'. Together they form a unique fingerprint.

Cite this