Abstract
The millimeter wave (mmWave) bands are likely to play a significant role in next generation cellular systems due to the possibility of very high throughput thanks to the availability of massive bandwidth and high-dimensional antennas. Especially in Non-Line-of-Sight conditions, significant variations in the received RF power can occur as a result of the scattering from nearby building and terrain surfaces. Scattering objects come and go as the user moves through the local environment. At the higher end of the mmWave band, rough surface scatter generates cluster-based small-scale fading, where signal levels can vary by more than 20 dB over just a few wavelengths. This high level of channel variability may present significant challenges for congestion control. Using our recently developed end-to-end mmWave ns3-based framework, this paper presents the first performance evaluation of TCP congestion control in next-generation mmWave networks. Importantly, the framework can incorporate detailed models of the mmWave channel, beam- forming and tracking algorithms, and builds on statistical channel models derived from real measurements in New York City, as well as detailed ray traces.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Conference on Communications Workshops (INFOCOM WRKSHPS 2016) |
Subtitle of host publication | Proceedings of a meeting held 10-14 April 2016, San Francisco, California, USA |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 730-735 |
Number of pages | 6 |
ISBN (Electronic) | 9781467399555 |
ISBN (Print) | 9781467399562 |
DOIs | |
Publication status | Published - Sept 2016 |
Event | 2016 IEEE International Conference on Computer Communications Workshops (INFOCOM WKSHPS 2016) - San Francisco, CA, United States Duration: 10 Apr 2016 → 14 Apr 2016 |
Conference
Conference | 2016 IEEE International Conference on Computer Communications Workshops (INFOCOM WKSHPS 2016) |
---|---|
Abbreviated title | INFOCOM WKSHPS 2016 |
Country/Territory | United States |
City | San Francisco, CA |
Period | 10/04/16 → 14/04/16 |
Keywords
- Performance evaluation
- Congestion control
- Millimeter wave cellular
- 5G
- TCP
- Raytracing