Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development

Tom J. Phillips, Hannah Scott, David A. Menassa, Ashleigh L. Bignell, Aman Sood, Jude S. Morton, Takami Akagi, Koki Azuma, Mark F. Rogers, Catherine E. Gilmore, Gareth J. Inman, Simon Grant, Yealin Chung, Mais M. Aljunaidy, Christy Lynn Cooke, Bruno R. Steinkraus, Andrew Pocklington, Angela Logan, Gavin P. Collett, Helena KempPeter A. Holmans, Michael P. Murphy, Tudor A. Fulga, Andrew M. Coney, Mitsuru Akashi, Sandra T. Davidge, C. Patrick Case*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

34 Citations (Scopus)
338 Downloads (Pure)

Abstract

Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.

Original languageEnglish
Article number9079
JournalScientific Reports
Volume7
Early online date22 Aug 2017
DOIs
Publication statusPublished - 1 Dec 2017

Keywords

  • Disease model
  • Experimental models of disease
  • Schizophrenia

Fingerprint Dive into the research topics of 'Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development'. Together they form a unique fingerprint.

Cite this