TY - JOUR
T1 - Triboelectric charging of volcanic ash from the 2011 Grímsvötn eruption
AU - Houghton, Isobel M.P.
AU - Aplin, Karen L.
AU - Nicoll, Keri A.
PY - 2013/9/10
Y1 - 2013/9/10
N2 - The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office's low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5, 024004 (2010)1748-932610.1088/1748-9326/5/2/024004; H. Hatakeyama J. Meteorol. Soc. Jpn. 27, 372 (1949)JMSJAU0026-1165]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects.
AB - The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office's low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5, 024004 (2010)1748-932610.1088/1748-9326/5/2/024004; H. Hatakeyama J. Meteorol. Soc. Jpn. 27, 372 (1949)JMSJAU0026-1165]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects.
UR - http://www.scopus.com/inward/record.url?scp=84884230980&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.111.118501
DO - 10.1103/PhysRevLett.111.118501
M3 - Article (Academic Journal)
C2 - 24074123
AN - SCOPUS:84884230980
SN - 0031-9007
VL - 111
JO - Physical Review Letters
JF - Physical Review Letters
IS - 11
M1 - 118501
ER -