Two energy scales in the spin excitations of the high-temperature superconductor La2-xSrxCuO4

B Vignolle, SM Hayden, DF McMorrow, HM Rønnow, B Lake, CD Frost, TG Perring

Research output: Contribution to journalArticle (Academic Journal)peer-review

182 Citations (Scopus)

Abstract

The excitations responsible for producing high-temperature superconductivity in the copper oxides have yet to be identified. Two promising candidates are collective spin excitations and phonons1. A recent argument against spin excitations is based on their inability to explain structures observed in electronic spectroscopies such as photoemission and optical conductivity. Here, we use inelastic neutron scattering to demonstrate that collective spin excitations in optimally doped La2-xSrxCuO4 are more structured than previously thought. The excitations have a two-component structure with a low-frequency component strongest around 18 meV and a broader component peaking near 40-70 meV. The second component carries most of the spectral weight and its energy matches structures observed in photoemission in the range 50-90 meV. Our results demonstrate that collective spin excitations can explain features of electronic spectroscopies and are therefore likely to be strongly coupled to the electron quasiparticles.
Translated title of the contributionTwo energy scales in the spin excitations of the high-temperature superconductor La2-xSrxCuO4
Original languageEnglish
Pages (from-to)163 - 167
Number of pages5
JournalNature Physics
Volume3 (3)
DOIs
Publication statusPublished - Mar 2007

Bibliographical note

Publisher: Nature Publishing Group

Fingerprint

Dive into the research topics of 'Two energy scales in the spin excitations of the high-temperature superconductor La2-xSrxCuO4'. Together they form a unique fingerprint.

Cite this