Abstract
Periodic structures have a large influence on propagating waves. This holds for various types of waves over a large range of length scales: from electrons in atomic crystals and light in photonic crystals to acoustic waves in sonic crystals. The eigenstates of these waves are best described with a band structure, which represents the relation between the energy and the wavevector (k). This relation is usually not straightforward: owing to the imposed periodicity, bands are folded into every Brillouin zone, inducing splitting of bands and the appearance of bandgaps. As a result, exciting phenomena such as negative refraction, auto-collimation of waves and low group velocities arise. k-space investigations of electronic eigenstates have already yielded new insights into the behaviour of electrons at surfaces and in novel materials. However, for a complete characterization of a structure, an understanding of the mutual coupling of eigenstates is also essential. Here, we investigate the propagation of light pulses through a photonic crystal structure using a near-field microscope. Tracking the evolution of the photonic eigenstates in both k-space and time allows us to identify individual eigenstates and to uncover their dynamics and coupling to other eigenstates on femtosecond timescales even when co-localized in real space and time.
Translated title of the contribution | Ultrafast evolution of photonic eigenstates in k-space |
---|---|
Original language | English |
Pages (from-to) | 401 - 405 |
Number of pages | 5 |
Journal | Nature Physics |
Volume | 3 |
DOIs | |
Publication status | Published - Jun 2007 |
Bibliographical note
Publisher: Nature Publishing GroupOther: Article featured on the cover of the issue