Underactuated fingers controlled by robust and adaptive trajectory following methods

Jamaludin Jalani, G Herrmann, CR Melhuish

Research output: Contribution to journalArticle (Academic Journal)peer-review

4 Citations (Scopus)

Abstract

Choosing an appropriate control scheme to alleviate nonlinearities and uncertainties is not a trivial task,especially when models are not easily available and practical evaluation provides the only means for actual performance assessment. Various factors can contribute to these nonlinearities and uncertainties, such as friction and stiction. Thus, this article investigates four different control schemes, namely PID, adaptive, conventional sliding mode control (SMC) and integral sliding mode (ISMC) control which are implemented in the Bristol Elumotion Robot Hand (BERUL) to analyse and overcome the aforementioned problems. The hand has five fingers with 16 joints and all fingers are underactuated. The implementation of the proposed control schemes are challenging since the BERUL fingers have significant friction, stiction and unknown parameters. The fingers are light in weight and fragile. Comparative performance characteristics have shown that the ISMC is the most suitable candidate to provide good experimental trajectory following and positioning control for underactuated BERUL fingers.
Translated title of the contributionUnderactuated fingers controlled by robust and adaptive trajectory following methods
Original languageEnglish
Pages (from-to)120-132
Number of pages13
JournalInternational Journal of Systems Science
Volume45
Issue number2
Early online date21 May 2012
DOIs
Publication statusPublished - 2014

Fingerprint Dive into the research topics of 'Underactuated fingers controlled by robust and adaptive trajectory following methods'. Together they form a unique fingerprint.

Cite this