Abstract
Simulations of water near extended hydrophobic spherical solutes have revealed the presence of a region of depleted density and accompanying enhanced density fluctuations.The physical origin of both phenomena has remained somewhat obscure. We investigate these effects employing a mesoscopic binding potential analysis, classical density functional theory (DFT) calculations for a simple Lennard-Jones (LJ) solvent and Grand Canonical Monte Carlo (GCMC) simulations of a monatomic water (mw) model. We argue that the density depletion and enhanced fluctuations are near-critical phenomena. Specifically, we show that they can be viewed as remnants of the critical drying surface phase transition that occurs at bulk liquid-vapor coexistence in the macroscopic planar limit, i.e.~as the solute radius $R_s\to\infty$. Focusing on the radial density profile $\rho(r)$ and a sensitive spatial measure of fluctuations, the local compressibility profile $\chi(r)$, our binding potential analysis provides explicit predictions for the manner in which the key features of $\rho(r)$ and $\chi(r)$ scale with $R_s$, the strength of solute-water attraction $\varepsilon_{sf}$, and the deviation from liquid-vapor coexistence of the chemical potential, $\delta\mu$. These scaling predictions are confirmed by our DFT calculations and GCMC simulations. As such our theory provides a firm basis for understanding the physics of hydrophobic solvation.
Original language | English |
---|---|
Article number | 034508 |
Journal | The Journal of Chemical Physics |
Volume | 158 |
Issue number | 3 |
DOIs | |
Publication status | Published - 19 Jan 2023 |
Bibliographical note
Funding Information:This work used the facilities of the Advanced Computing Research Centre, University of Bristol. We thank F. Turci for valuable discussions. R.E. acknowledges the support received under Leverhulme Trust Grant No. EM-2020-029\4.
Publisher Copyright:
© 2023 Author(s).
Fingerprint
Dive into the research topics of 'Understanding the physics of hydrophobic solvation'. Together they form a unique fingerprint.Equipment
-
HPC (High Performance Computing) and HTC (High Throughput Computing) Facilities
Alam, S. R. (Manager), Williams, D. A. G. (Manager), Eccleston, P. E. (Manager) & Greene, D. (Manager)
Facility/equipment: Facility