Uniqueness of degree-one Ginzburg–Landau vortex in the unit ball in dimensions N ≥ 7

Radu Ignat, Luc Nguyen, Valeriy Slastikov, Arghir Zarnescu

Research output: Contribution to journalArticle (Academic Journal)peer-review

3 Citations (Scopus)
66 Downloads (Pure)

Abstract

For ε>0, we consider the Ginzburg–Landau functional for RN-valued maps defined in the unit ball BN⊂RN with the vortex boundary data x on ∂BN. In dimensions N≥7, we prove that, for every ε>0, there exists a unique global minimizer uε of this problem; moreover, uε is symmetric and of the form uε(x)=fε(|x|)[Formula presented] for x∈BN.

Translated title of the contributionUniqueness of degree-one Ginzburg–Landau vortex in the unit ball in dimensions N ≥ 7
Original languageFrench
Pages (from-to)922-926
Number of pages5
JournalComptes Rendus Mathematique
Volume356
Issue number9
Early online date14 Aug 2018
DOIs
Publication statusPublished - 1 Sep 2018

Fingerprint Dive into the research topics of 'Uniqueness of degree-one Ginzburg–Landau vortex in the unit ball in dimensions N ≥ 7'. Together they form a unique fingerprint.

Cite this