Abstract
Ruthenium PNP complex 1a (RuH(CO)Cl(HN(C2H4Pi-Pr2)2)) represents a state-of-the-art catalyst for low-temperature (<100 °C) aqueous methanol dehydrogenation to H2 and CO2. Herein, we describe an investigation that combines experiment, spectroscopy, and theory to provide a mechanistic rationale for this process. During catalysis, the presence of two anionic resting states was revealed, Ru-dihydride (3-) and Ru-monohydride (4-) that are deprotonated at nitrogen in the pincer ligand backbone. DFT calculations showed that O- and CH- coordination modes of methoxide to ruthenium compete, and form complexes 4- and 3-, respectively. Not only does the reaction rate increase with increasing KOH, but the ratio of 3-/4- increases, demonstrating that the "inner-sphere" C - H cleavage, via C - H coordination of methoxide to Ru, is promoted by base. Protonation of 3- liberates H2 gas and formaldehyde, the latter of which is rapidly consumed by KOH to give the corresponding gem-diolate and provides the overall driving force for the reaction. Full MeOH reforming is achieved through the corresponding steps that start from the gem-diolate and formate. Theoretical studies into the mechanism of the catalyst Me-1a (N-methylated 1a) revealed that C - H coordination to Ru sets-up C - H cleavage and hydride delivery; a process that is also promoted by base, as observed experimentally. However, in this case, Ru-dihydride Me-3 is much more stable to protonation and can even be observed under neutral conditions. The greater stability of Me-3 rationalizes the lower rates of Me-1a compared to 1a, and also explains why the reaction rate then drops with increasing KOH concentration.
Original language | English |
---|---|
Pages (from-to) | 14890-14904 |
Number of pages | 15 |
Journal | Journal of the American Chemical Society |
Volume | 138 |
Issue number | 45 |
Early online date | 4 Nov 2016 |
DOIs | |
Publication status | Published - 16 Nov 2016 |
Fingerprint
Dive into the research topics of 'Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru-PNP Pincer Complexes'. Together they form a unique fingerprint.Profiles
-
Dr Alastair J J Lennox
- School of Chemistry - Royal Society University Research Fellow and Proleptic Associate Professor
Person: Academic